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We develop a formalism and present an algorithm for optimization of the trial wave-function used in fixed-
node diffusion quantum Monte Carlo (DMC) methods. The formalism is based on the DMC mixed estimator
of the ground state probability density. We take advantage of a basic property of the walker configuration
distribution generated in a DMC calculation, to (i) project-out a multi-determinant expansion of the fixed node
ground state wave function and (ii) to define a cost function that relates the interacting-ground-state-fixed-node
and the non-interacting trial wave functions. We show that (a) locally smoothing out the kink of the fixed-node
ground-state wave function at the node generates a new trial wave function with better nodal structure and (b)
we argue that the noise in the fixed-node wave function resulting from finite sampling plays a beneficial role,
allowing the nodes to adjust towards the ones of the exact many-body ground state in a simulated annealing-
like process. Based on these principles, we propose a method to improve both single determinant and multi-
determinant expansions of the trial wave function. The method can be generalized to other wave function
forms such as pfaffians. We test the method in a model system where benchmark configuration interaction
calculations can be performed and most components of the Hamiltonian are evaluated analytically. Comparing
the DMC calculations with the exact solutions, we find that the trial wave function is systematically improved.
The overlap of the optimized trial wave function and the exact ground state converges to 100% even starting from
wave functions orthogonal to the exact ground state. Similarly, the DMC total energy and density converges to
the exact solutions for the model. In the optimization process we find an optimal non-interacting nodal potential
of density-functional-like form whose existence was predicted in a previous publication [Phys. Rev. B 77
245110 (2008)]. Tests of the method are extended to a model system with a conventional Coulomb interaction
where we show we can obtain the exact Kohn-Sham effective potential from the DMC data.

PACS numbers:

I. INTRODUCTION

In diffusion quantum Monte Carlo (DMC) a trial wave
function is used to enforce both the antisymmetry of the elec-
tronic many-body wave function1,2,4 and the nodal structure
of the solution. In highly correlated materials, the accuracy
of the trial wave function becomes increasingly important and
determines the success or failure of the method. Indeed, con-
cerns about the fixed-node accuracy have tended to limit ap-
plications of DMC to pre-transition metal elements. The dis-
covery and development of new methods to improve the trial
wave functions, ideally without great computational expense,
is consequently highly desirable for almost all DMC calcula-
tions.

In DMC calculations the trial wave function ΨT (R) is com-
monly a product of an antisymmetric function ΦT (R) and
a Jastrow factor eJ(R). Usually ΦT (R) is a Slater determi-
nant constructed with single particle Kohn-Sham orbitals from
density functional theory (DFT) or from other mean field ap-
proaches such as Hartree-Fock. The Jastrow factor does not
change the nodes, but accelerates convergence and improves
the algorithm’s numerical stability. The Jastrow factor is opti-
mized in a previous variational Monte Carlo (VMC) calcula-
tion. The DMC algorithm finds the lowest energy of the set of
all wave functions that share the nodes of ΨT (R). The exact
ground-state energy will be obtained only if the exact nodes
are provided. Since any change to an antisymmetric wave

function must result in a higher energy than the antisymmet-
ric ground state, the energy obtained with arbitrary nodes is an
upper bound to the exact ground-state energy. 1,4 Only in small
systems is it currently possible to improve the nodes5–9 or
even avoid the trial wave function approach altogether. 3,10,11

For small or weakly correlated systems, where other numeri-
cal approaches can compete, the utility of DMC as a method
depends crucially on the accuracy of the trial wave function.
Multiple determinant, pfaffian,5 and back-flow8 wave func-
tions and geminal products12 are increasingly popular due to
the improved accuracy.

To improve the DMC energy one must improve the nodal
surface of the trial wave function. However, to our knowl-
edge, all algorithms for wave function optimization are based
on the VMC approach, with any improvement in the DMC en-
ergy occurring only as a side-effect. The use of VMC might
be a limitation since VMC samples more frequently the re-
gions of the wave function that have larger probability den-
sity and are thus far from the nodes.9 Accordingly, VMC
based optimization methods improve first the wave function
at regions which are far from the nodes, while the nodes are
only improved indirectly. It has been found, however, that
VMC based optimization methods, in general, also improve
the DMC energy.7,13 A direct optimization of the DMC energy
is desirable, and might have improved convergence properties
compared to current indirect approaches.

While it has been shown by us and others that, within the
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single Slater determinant approach, the computational cost of
an electronic update step in the DMC algorithm can have an
almost linear scaling with the number of electrons,14–16 the use
of these methods is limited if we do not find a better source
of trial wave functions than those obtained from mean-field
approaches such as DFT. We recently showed17 that Kohn-
Sham DFT wave functions cannot be expected to yield good
nodes in general. As correlations increase, Kohn-Sham DFT
wave functions can be bad sources of nodal surfaces. 17 In-
deed, we also found that as the size of the system increases,
the nodal error of DFT wave functions might be of the order of
the triplet excitation energies, precluding the prediction of ac-
curate optical properties18 even for simple carbon fullerenes.
Accordingly, it is highly desirable to find a method to (i) ob-
tain trial wave functions with accurate nodal structures, (ii)
retain the simplicity of a mean field approach, or (iii) use a
minimum number of Slater determinants i.e., the wave func-
tions are compact and easily evaluated, (iv) directly optimize
the nodes in DMC, and (v) improve the nodal structure sys-
tematically independently of the starting point. In this contri-
bution we provide such a method.

In order to use DMC to find the best trial wave function
we overcome two major obstacles: (i) obtain a representation
of the fixed-node ground-state DMC wave function, and (ii)
find a method to keep the trial wave function compact in large
systems by minimizing the number of determinants.

This work is the natural continuation of a recent article
(Ref. 17) where we proved the existence of an optimal effec-
tive nodal potential for generating the orbitals in the determi-
nants in the trial wave function used in DMC. While some de-
tails are rederived here, we recommend reading Ref. 17 before
this article. We previously proved17 that specific properties
of the interacting ground state can be retained via minimiza-
tion of cost functions in the set of pure-state non-interacting
densities. Each cost function defines the gradient of an effec-
tive non-interacting potential which is optimized in a Newton-
Raphson-like approach until the cost function reaches a min-
imum. In this paper we take the next step: we use known
properties of the walker distribution function generated in a
DMC run to define a cost function relating the non-interacting
wave functions with the fixed-node ground-state wave func-
tion. This allows us to obtain, for example, the Kohn-Sham
potential or an effective nodal potential from the DMC calcu-
lation. The method appears to be limited only by the quality
of the statistics that one can collect in DMC, which becomes
increasingly more demanding as the number of electrons in
the system increases. Although this might limit the applica-
bility of the method to systems with small electron counts, we
note that DMC is readily parallelized with excellent scaling
on modern computers. We also expect that improved sam-
pling and optimization schemes can be constructed using the
initial ideas and methods presented here.

The remainder of this paper is organized as follows. In Sec-
tion II we demonstrate that the nodes can be improved by lo-
cally removing the kinks in the fixed node ground state. In
Section III we derive a formalism and a method to obtain a
multi-determinant expansion of the fixed-node ground-state
wave function directly from a DMC run. For many applica-

FIG. 1: a) (Color online) Schematic representation of fixed-node
ground-state (ΨF N , purple), ground-state (Ψ, black) then new trial
wave function (ΨT , purple dashed line) in the direction perpendicu-
lar to the nodes. We assume that removing the kink in the fixed-node
wave function ΨF N moves the nodes of ΨT in the right direction
(see dashed lines). b) Schematic representation of the nodal surfaces
obtained from the walker distribution after removing the kinks. The
noise introduced in the nodes by random fluctuations of the walk-
ers is assumed to correct itself if the statistics is increased from one
iteration to the next.

tions, this expansion may already be sufficient. In Section
IV we present a cost function that allows the optimization of
more compact trial wave functions that match the fixed-node
ground state. A formalism for wave function optimization
based on an effective DFT-like nodal potential is given. In
Section V we apply and compare these methods to a model
system that can be solved nearly analytically and demonstrate
its convergence properties. In Section VI we propose a gen-
eral algorithm based on the experience gathered solving the
model. Finally in Section VII we summarize and discuss the
prospects of this method for application in large systems.

II. SYSTEMATIC REDUCTION OF THE NODAL ERROR
WITHIN DMC

The importance sampling DMC algorithm, in the fixed-
node approximation, finds the lowest energy EDMC

T among
the set of all wave functions that share the nodal surface
ST (R) where the trial wave function ΨT (R) = 0 and
changes sign. R denotes a point in the many-body 3N di-
mensional space of electron coordinates. We denote this wave
function ΨFN(R) as the fixed-node ground state. It can be
shown that ΨFN(R) corresponds to the ground state of a sys-
tem with an infinite potential for a given sign of ΨT (R) which
can be extended to the complete space with fermion symme-
tries.

The gradient of the fixed-node ground-state wave function
ΨFN(R) can be discontinuous at the nodal surface ST (R)4.
Indeed, if the nodes of the trial wave function do not corre-
spond exactly to the nodes of an eigenstate of the Hamilto-
nian S(R), the Laplacian of the fixed-node ground-state wave
function must have a delta contribution at least on part of
ST (R). Otherwise, since the Schrödinger equation is satisfied
elsewhere by ΨFN (R), without this delta in the Laplacian
at the nodal surface, ΨFN (R) would be an eigenstate of the
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Hamiltonian. This implies that the gradient of ΨFN (R) must
be discontinuous at ST (R) if the nodal surface ST (R) �=
S(R).

In Figure 1 a) we show a schematic representation of the
trial wave function ΨT (R), the ground-state wave function
Ψ(R) and the fixed-node ground-state ΨFN(R). In this
section we show that when this kink in ΨFN (R) is locally
smoothed away as

Ψ̃T (R) =
∫

dR′ΨFN(R′)δ̃ (R,R′) , (1)

the nodes of the resulting functions improve for a broad class
of δ̃ (R,R′).

Provided that ΨFN (R′) is an antisymmetric function with
finite projection on the ground state, it has been shown1,29 that
Ψ̃T (R), and its node, converge to the exact ground state if

δ̃ (R,R′) = (2πτ)−3N/2e−τV (R)e−(R−R′)2/2τ (2)

where τ is a small number and V (R) is the local poten-
tial energy. Note that Eq.(1) is tends to the δ function as
(2πτ)−3N/2e−(R−R′)2/2τ for τ → 0. In turn, using the cen-
tral limit theorem (CLT) it can be shown that a recursive con-
volution of any approximation of δ(R) tends to a Gaussian

(2πτ)−3N/2e−(R0−Rn+1)2/2τ = (3)

=
∫
· · ·

∫
Πn

j=1dRiδ̃

(
Ri−1

√
n
,
Ri

√
n

)
,

as long as the Taylor expansion of its Fourier transform exists.
Replacing Eqs. (3) and (2) in Eq. (1), and taking the limit
e−τV (R) → 1 for τ → 0, one finds that the nodes of Ψ̃T (R)
will improve successively for any approximation of δ(R) that
satisfies the CLT conditions if it is sufficiently localized. For
example, we can use a smoothing function proportional to

δ̃ (R,R′) =
∗∑
n

Φn(R)Φn(R′), (4)

where the Φn(R) are functions of a complete basis and the
“∗” in

∑∗
n means that only some elements are included in the

sum (with a criterium described below). The Φn(R) in (4) can
be obtained from a non-interacting problem. When Eq. (4) is
replaced in Eq. (1) repeatedly, for τ → 0, it will move the
nodes of Ψ̃T (R) as Eq. (2). That means that if a new DMC
calculation is performed with Ψ̃T (R) as a trial wave-function,
the DMC energy should go down.

If the sum in Eq. (4 ) is restricted to antisymmetric Φn(R),
Eq. (4) expands an antisymmetrized delta. This form projects
out any non-fermionic component introduced in the wave-
function along the DMC algorithm as in the A-function ap-
proach used by Bianchi and collaborators. 22

Note that a discontinuity of the gradient of the fixed-node
wave function ΨFN (R) at the node implies if walkers are dis-
tributed according to ΨFN (R) (with the sign of ΨFN (R))
there will be more walkers in the the vicinity of one side of
the nodal surface than in the other. Accordingly, if this walk-
ers are released in a pure diffusion algorithm,29 for τ → 0 they

will cross, on average, more from one side of the nodal surface
than from the other. The nodes defined by the population of
these signed walkers29 would move in the same direction they
do if we smooth the kink in ΨFN (R) as long as the time step
is short enough and kinetic energy term in the green function
(1) is dominant. Consequently, the nodes can be improved by
moving them in the direction of lower “walker pressure” with
a pure diffusion approach. This direction is the same direction
they move if the kinks of ΨFN (R) are locally smoothed.

Since for a sufficiently localized δ̃ (R,R′) the nodes of
Ψ̃T (R) move in (1) in the same direction they would move
in a release node scheme3, the quality of the nodes globally,
but there could be smaller local worsenings.

However, any method to obtain ΨFN (R) from the walker
distribution in a DMC run23 will carry the error of statistical
fluctuations of a finite sample. The nodes might move in the
wrong direction because of these fluctuations. We assume the
method is robust against this random fluctuations when ap-
plied recursively, and can form the basis of an optimization
process to improve the trial wave function. Note that if in-
correct fluctuations increase the kink in ΨFN(R) at the node,
they will also increase the probability to move the node in the
opposite direction in successive iterations. Conversely, fluc-
tuations that correctly improve the nodes will be reinforced
in successive iterations. Since these fluctuations are reduced
when the statistics is improved, the nodal surfaces will con-
verge to the true nodes if the statistics is improved from one
iteration to the next (Figure 1 b) ). Note that we do not claim
that this process is necessarily the most efficient optimization
approach: more sophisticated iterative methods and optimiza-
tion algorithms are clearly possible.

Summarizing, we would be able to improve the nodes
systematically provided we could obtain ΨFN (R) from the
walker configurations (probability distribution) of a DMC cal-
culation.

III. DETERMINATION OF THE FIXED-NODE
GROUND-STATE WAVE FUNCTION FROM THE DMC

PROBABILITY DISTRIBUTION

A. Sampling the fixed-node ground-state wave function

The distribution function of the walkers in an importance
sampling DMC algorithm is given by:2

f(R) = ΨFN(R)ΨT (R). (5)

We note that ΨFN (R) in Eq. (5) can be rewritten as an
antisymmetric function times the Jastrow factor eJ(R) as

ΨFN (R) = eJ(R)e−J(R)ΨFN(R)

= eJ(R)
∑

n

λn < R|(
∏

c†
∏

c)|ΦT >

= eJ(R)
∑

n

λnΦn(R) (6)

where
∑
λn(

∏
c†

∏
c)|ΦT > is a complete configuration in-

teraction (CI) expansion in the basis of electron-hole pairs .



4

Accordingly, in Eq. (6) the Φn(R) are Slater determinants
or pfaffians5 obtained replacing in ΦT (R) some of the occu-
pied φν single particle functions by unoccupied φn functions,
accordingly

∫
dRΦn(R)Φm(R) = δn,m.

In practice, the CI expansion can be truncated retaining, for
example, only the Φm(R) with a non-interacting energy be-
low a given energy cut off. The CI expansion in principle
consists of all single, double, triple, quadruple and higher ex-
citations. By analogy with conventional CI calculations, the
higher-order excitations are expected to contribute less to the
wave function than low order excitations. As the kinetic en-
ergy of higher-order excitations increases as compared with
the interaction, their contribution to the ground-state wave
function decreases.

While a Jastrow factor eJ(R) is not formally required in
a complete expansion of the wave function in Eq. (6), it is
believed that the introduction of a Jastrow factor limits the
number of coefficients required in the multi-determinant ex-
pansion, due in part to the more efficient description of the
electron-electron cusp. For some applications it may be desir-
able to not employ a Jastrow factor, since the extracted wave
function may be more easily used in later analysis.

Replacing Eq. (6) in Eq. (5) we obtain

f(R) = e2J(R)ΦT (R)
∑

n

λnΦn(R). (7)

Borrowing a method from Optimized Effective Potentials
(OEP) we define the following projectors25,26:

ξn(R) = e−2J(R) Φn(R)
ΦT (R)

. (8)

Note that the projectors ξn(R) are symmetric (bosonic) func-
tions. Replacing f(R) by (7), using the definition of ξn(R)
[Eq. (8)] and the orthogonality condition it can be demon-
strated that ∫

dRf(R)ξn(R) = λn (9)

Thus the coefficients of the multi-determinant expansion (6)
of the fixed-node DMC ground-state wave function can be es-
timated directly as a sum over the total number of walkers N c

along the DMC random walk as

< λn >=
1
Nc

Nc∑
i=1

ξn(Ri) γ(Ri) (10)

where

γ(Ri) =
−1 +

√
1 + 2|v|2τ

|v|2τ with v =
∇ΨT (Ri)
ΨT (Ri)

. (11)

For convenience we divided by the number of walkers N c in
Eq. (10) since the normalization constant of ΨFN(R) and the
corresponding coefficients λn is arbitrary. The factor γ(Ri) in
(10) is a time step, τ , correction derived following Ref. 27 that
corrects the divergences of the projectors ξn(Ri) at the nodes,
this correction is not always applied to estimators (e.g. the

local energy) but we find that, in practice, it reduces the error
of the wave function coefficients. For an uncorrelated sample
of walker configurations the error bar of the multi-determinant
expansion can be determined from

< λ2
n > =

1
Nc

Nc∑
i=1

ξn(Ri)2γ(Ri)2 (12)

< σn > =

√
< λn >2 − < λ2

n >

Nc

λn � < λn > ± < σn >√
Nc − 1

.

As Nc → ∞ in Eqs. (12) the error bar in the multi-
determinant coefficients λn goes to zero. As usual, the er-
ror bars can be used to monitor convergence of the calcula-
tion. While the eventual goal is to obtain small error bars, we
found in practice it is better to start with Nc small and have it
slowing increase with each iteration as the trial wave function
improves (see below).

The expression of the delta function in Eq. (4) can be sub-
ject to a linear transformation by any operator with an inverse
as

δ∗ (R,R′) = eJ(R)δ̃ (R,R′) e−J(R′). (13)

Replacing Eqs. (6) and (13) in Eq. (1) we find a new trial
wave-function with better nodes

Ψ̃T (R) = eJ(R)
∗∑
n

λnΦn(R) , (14)

which is simply a truncated expansion.
Since the Φn(R) are selected to be eigen vectors a non

interacting problem, highly localized features of ΨFN (R)
would required components with high eigenvalues. At the
same time, resolving those details would require a large num-
ber of configurations to improve the statistics. Accordingly,
we truncate the expansion in Eq. (14) to the coefficients with
relative error smaller than 25%. Note that as the statistics
is improved, the error bar diminishes, the number of wave-
functions retained in (4) increases and so does the localization
of δ∗ (R,R′). Thus the conditions to improve the node sys-
tematically described in Section II are reached as the statistic
improves.

B. Sampling the Jastrow factor

Instead of expressing ΨFN (R) as a product of the same
Jastrow factor used in ΨT (R) times a different multi-
determinant expansion, one can choose to optimize the Jas-
trow factor while using the same antisymmetric function
ΦT (R). It is easy to show that there is a symmetric bosonic
factor that turns ΦT (R) into ΨFN (R) which is formally
given by

eJ̃(R) =
ΨFN (R)
ΦT (R)

(15)
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Replacing (6) in (15) we find

eJ̃(R) = eJ(R)
∑

n

λn
Φn(R)
ΦT (R)

= e3J(R)
∑

n

λnξn(R) (16)

Note that the product eJ̃(R)ΦT (R) yields Eq. (6).
While projectors ξn(R) could be used to improve the Jas-

trow factor, since they diverge for ΦT (R) → 0, it is necessary
to fit instead a continuous functional form using values away
from the nodes where truncation and sampling errors play a
dominant role (see Section IV).

Updating the multi-determinant expansion of the antisym-
metric part of the trial wave function, see Eq. (6), alters the
nodes because (i) the expansion is truncated and (ii) the co-
efficients of the multi-determinant expansion have a random
error due to finite sampling. On the other hand, updating the
Jastrow factor, see Eq. (16), keeps the nodes fixed but reduces
the number of determinants required and the overall compu-
tational cost. There is a compromise between accuracy and
speed4. A very good wave function might have a very small
variance in the local energy, but if it is expensive to evaluate,
one might obtain the same statistical error in less wall-clock
time with a faster lower quality wave function. In an ideal
case, if the nodes are v-representable (see below and Ref. 17)
only a single determinant is required to describe the fixed-
node ground-state wave function. In practice, the form of
the Jastrow factor eJ̃(R) is unknown, while an infinite multi-
determinant expansion is infeasible. This implies that both the
factors in Eq. (6) are required in general; an efficient scheme
will optimize both the Jastrow factor and determinantal part
of the wave function. Particularly for the case of a metallic
system, the cost of a multi-determinant expansion might be
prohibitive due to the large number of low energy excitations.
In this case it might be preferable to concentrate on an opti-
mized Jastrow factor.24

C. A simple self-healing DMC algorithm

We have formulated, for small systems, a working iterative
algorithm based on a multi-determinant or multi-pfaffian ex-
pansion of the fixed-node ground-state wave function. In this
algorithm the calculated coefficients Eq. (10) of the expan-
sion are used to form a new trial wave function defined by Eq.
(14). Initially the statistical errors present in λn due to finite
sampling appear to have a beneficial role, particularly when
the initial trial wave function has poor nodes. Note that in the
limit of an infinite number of determinants in Eq. (14) with no
statistical sampling errors in λn the trial wave function would
exactly reproduce the fixed-node wave function, and an itera-
tive improvement of the nodes would not be possible. Statis-
tical fluctuations in the coefficients in λn allow the nodes to
move. In the next iteration regions near beneficial fluctuations
are revisited by walkers while statistically insignificant fluctu-
ations tend not to propagate or grow. i.e. Our assumption on

the stability against random noise appears to be valid in prac-
tice. Thus, a statistical error bar in the coefficients plays the
role of a random thermal fluctuation in a simulated annealing
algorithm.28 It is ironic and remarkable that random errors can
be used to eliminate systematic errors.

While it is relatively economical to calculate a large number
of multi-determinants every autocorrelation length, as more
determinants are included in the trial wave function each time
step of the DMC calculation becomes more demanding. Ac-
cordingly, for large or continuum systems a method to min-
imize the number of determinants used to represent a given
nodal surface is required. This is described in the next sec-
tion.

IV. DERIVATION OF THE BEST NODAL-EFFECTIVE
POTENTIAL FROM DMC

While a working multi-determinant algorithm can be con-
structed on the basis of the multi-determinant expansion of the
previous section, a significant step forward can be taken using
the theory developed in Ref. 17 and taking advantage of Eq.
(5) to construct a new trial wave function that can be eval-
uated more efficiently than the multi-determinant expansion
Eq. (14). This method will be most effective when the initial
orbitals are poor, e.g. if the system is strongly correlated.

A. A cost function for the DMC algorithm

Given a probability density p(R) and a binned statistical
sample of Nc configurations of the random variable R, we
can define a new random variable

χ2 =
M∑
i

[ni −NcΩip̄(Ri)]
2

NcΩip̄(Ri)
(17)

which is distributed by the Chi-squared distribution
function29. In Eq.(17) Ωi is the volume of the bin i,
with ni configuration counts, p̄(Ri) is the average of p(R)
in Ωi and M is the number of bins. Each term in Eq.(17) is
the square deviation of ni divided by the expectation value
of the mean which in the limit of large counts is expected to
be equal the square deviation. Accordingly, in χ2 relative
deviations from the mean have the same impact independently
of the absolute value of the probability density. We will take
advantage of this property to replace a wave function difficult
to evaluate (5) by a simpler approximate one that retains
key properties. Setting ni = NcΩiq̄(Ri) in (17), dividing
by Nc taking the limit M → ∞, and using the mean value
theorem, we find a cost function to compare two continuous
distribution functions:

Kpq =
∫

dR
[q(R) − p(R)]2

p(R)
(18)

We showed in Ref. 17 that if we wish to preserve proper-
ties, other than the density, cost functions can be defined relat-
ing the many-body ground-state Ψ(R) with a non-interacting
wave function ΦT (R). The walker distribution function2
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given by Eq. (5) allows us to construct several cost functions
relating the wave function to optimize with the exact fixed-
node ground-state ΨFN (R). Using Eq. (18) as a guide, we
propose the following expression:

KDMC =
∫

dR

[
Nc

ν̃ Ψ̃T (R)ΨT (R) − f(R)
]2

∣∣∣Nc

ν̃ Ψ̃T (R)ΨT (R)
∣∣∣ ×

× θ [f(R) − η] , (19)

where Ψ̃T (R) is a trial wave function to be optimized, f(R)
is given by Eq. (7) with coefficients obtained with a previous
DMC run using Eq. (10), θ(x) is the Heaviside function, η is
a small positive number, and

ν̃ =
∫

dR α(R) =
∫

dRΨ̃T (R)ΨT (R) (20)

Note in Eq. (19) that the first factor vanishes when Ψ̃T (R) →
ΨFN (R). Indeed, if Ψ̃T (R) is constrained to have the nodal
surface ST (R) and the sign of ΨT (R), the integral of the
first factor in (19) measures the probability that the distribu-
tion of a given ensemble of walkers f(R) corresponds to the
distribution29 α(R).

In Eq. (19), we add an absolute value function in the de-
nominator of the first factor and a Heaviside function in order
extend the set of Ψ̃T (R) where the cost function can be evalu-
ated beyond the fixed-node space. Note that , since f(R) > 0,
while negative values for α(R) are allowed, they are penal-
ized in the numerator more than positive values. In Eq. (19
) the nodes of Ψ̃T (R) can move within a distance [which de-
pends on η and f(R)] around ST (R). Otherwise, if the zeros
at the numerator and denominator of Eq. (19) do not match,
the value of the cost function would rise to infinity. An addi-
tional effect of θ is that any kink of ΨFN (R) at the node is
not enforced by the cost function in Ψ̃T (R). Since Ψ̃T (R)
will be obtained from the minimum energy solution of a non-
interacting problem17 and departures at the node are not pe-
nalized, it will interpolate smoothly avoiding a kink. Note
that we can chose alternative cost function forms. For exam-
ple, we can replace the denominator in Eq.(19) by f(R). This
choice would simplify the derivatives of the cost function but
it has a couple of disadvantages: First f(R) is expected to
be a very noisy function when it’s magnitude is small, while
the product of non-interacting v-representable wave-functions
α(R) = Ψ̃T (R)ΨT (R) is expected to be smooth (see IV B)
. We choose not to amplify the noise of f(R) in the denom-
inator. Second, Eq. (19) a small number for α(R) outside
the window defined by the Heaviside function is highly penal-
ized which confines the node of Ψ̃T (R) to remain inside the
window where the Heaviside function is zero.

B. Representability of the nodal surface

Given an interaction in a many-body system, the
Hohenberg-Kohn theorem19 establishes a functional corre-
spondence between electronic densities ρ(r), external poten-
tials V (r), and ground-state wave functions Ψ(R). The subset

of densities ρ(r) corresponding to a ground state of an inter-
acting system under an external potential V (r) are denoted as
pure state v-representable.20 A non-interacting pure state v-
representable density is given instead by ρ̄(r) =

∑
ν |φν (r) |2

where φν (r) are Kohn-Sham-like21 single particle orbitals, or
eigenvectors, of the single-particle Hamiltonian:[

−1
2
∇2 + V̄ (r)

]
φν (r) = ενφν (r) , (21)

where V̄ (r) is an effective single particle potential. The low-
est energy Slater determinant constructed with the solution of
Eq. (21) is a many-body non-interacting ground state. For
simplicity we denote those quantities that are simultaneously
interacting and non-interacting v-representable as simply v-
representable. In addition, certain quantities can be multi-
determinant v-representable, meaning that they can be rep-
resented by a finite multi-determinant expansion constructed
with the solutions of Eq. (21).

Since, the ground-state density ρ(r) determines the ground-
state wave function Ψ(R),19 ρ(r) defines also the points R of
the nodal surface S(R) where Ψ(R) = 0.

The nodes of the trial wave function, instead, are by con-
struction those of ΦT (R) (non-interacting v-representable).
The exact nodes S(R) may or may not be non-interacting v-
representable.17

C. Optimization of the effective nodal potential

The trial wave function is often constructed with non-
interacting orbitals derived from an effective potential [see Eq.
(21)], e.g. from Kohn-Sham DFT. For the moment we will
assume that Ψ̃T (R) is given in the single determinant Slater-
Jastrow form: Ψ̃T (R) = Φ̃T (R)eJ̃(R) (this derivation is ex-
tended to multiple determinants or pfaffians in IV F). How-
ever, for now, we assume that the node can move within all
the non-interacting v-representable set, which is a less restric-
tive condition than the fixed-node approximation but implies
accepting an error if S(R) is not v-representable.

In Ref. 17 we showed that, if the trial wave function de-
pends on non-interacting orbitals in an effective potential [as
in Eq. (21)], the effective potential V̄ (r) required to retain
a given property is a function of the cost function K . The
potential can be obtained by adding recursively the following
correction:

dVK(r) = −ε
o∑
ν

∫
dr′

δK

δφν (r′)
δφν (r′)
δVK (r)

(22)

where ε is adjusted during the optimization. Replacing K by
KDMC we get

δKDMC

δφν (r′)
=

∫
dRW (R)eJ̃(R) δΦ̃(R)

δφν (r′)
(23)

W (R) =
δKDMC

δΨ̃(R)
,
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being

W (R) =
2Δ(R)α(R) − Δ(R)2

|α(R)|2 sign(α(R))

× [1 − α(R)]ψT (R)
Nc

ν̃
θ [f(R) − η] , (24)

with Δ(R) = f(R) − α(R).
Within first order perturbation theory

δφν (r′)
δVK (r)

=
u∑
n

φn(r)φnu(r)
εν − εn

φn (r′) + cc . (25)

Replacing (23) and (25) in Eq. (22), we find

dVKDMC (r) = ε

o∑
ν

u∑
n

φn(r)φnu(r)
εν − εn

βn
ν + c.c. (26)

βn
ν =

∫
dRW (R)eJ̃(R)Φ̃n

ν (R) , (27)

In equations (26), (22), and (25) we used
∑o

n (
∑u

n ) to
define sums over occupied (unoccupied) states. In turn in (27)
Φ̃n,ν

T (R) means replacing the occupied state φν by φn which

results from combining the cofactors of φν (r′) [ δΦ̃(R)
δφν(r′) ] in

(23) with φn (r′) in (25).
The first factor in function W (R) [Eq. (24)] is obtained

from the derivative of the cost function (19) with respect to
α((R)) [ignoring contributions coming the discontinuities of
|x| since the Heaviside function in Eq. (19) is zero near the
nodes]. The second factor inW (R) results from the derivative
of α(R) with respect to Ψ̃T (R) [note in Eq.(20) that ν̃ is also
dependent on Ψ̃T (R) ].

D. Optimization of the Jastrow factor within DMC

We argued in the previous section that an optimal Jastrow
factor can be used to reduce the size of the multi-determinant
expansion. Optimizing the Jastrow factor is important to limit
the exponential cost of the CI expansion because, while the
Jastrow factor cannot influence the nodes, it can reduce the
burden of correcting the probability density from any value
given by a Slater determinant (see Eq. (15) ). Accordingly,
if the Jastrow factor is optimized, the antisymmetric part of
the wave function is free to search for the nodes. Often the
J̃(R) is dependent on a set of parameters γn. The value of
the cost function (Eq. 19) is also affected by the Jastrow factor
eJ̃(R). Thus the gradient of the cost function with respect to
an arbitrary change in eJ̃(R) can be obtained within a DMC
via

dKDMC

dγn
=

∫
dRW (R)eJ̃(R)Φ̃T (R)

dJ̃(R)
dγn

. (28)

E. Discussion

Note at this point that (1) both the coefficients βn
ν and γn

are integrals of the function W (R) which is only dependent

on the particular form of the cost function selected in (19) and
a representation of the walkers distribution f(R).

(2) f(R) is an essential component of W (R) that can be
obtained from the DMC run as explained in Section III or
binned.30

(3) Provided that f(R) is known, a distribution of configu-
rations Rj with probability |W (R)| can be generated with the
Metropolis algorithm.

All integrals of the form
∫

dRg(R)W (R) involved in Eqs.
(26) and (28) can be evaluated in a single correlated sampling
step as

∑
j sign[W (Rj)]g(Rj) .

(4) In most methods, the Jastrow factor parameters γn are
optimized within a variational Monte Carlo approach (either
minimizing the total energy or the energy variance). Here we
optimize them within a DMC run. The role of the Jastrow
factor within this approach, is different. Its role instead is to
fix the trial wave function Φ̃(R) to match the mixed density
estimator. The optimization of the Jastrow factor parameters
with Eq. (28) only ensures that the cost-function (19) is min-
imum. Optimization of the Jastrow factor is required to allow
the antisymmetric part of the wave function to move the nodes
while the Jastrow factor takes care of the symmetric contribu-
tion. However, if the variational freedom of the Jastrow factor
or the statistics are limited, the minimization of Eq. (19) does
not necessarily imply a minimum in the VMC energy or its
variance: the variance of the local energy might rise. In those
cases the Jastrow factor must be optimized twice: first when
the potential is optimized and second a VMC variance mini-
mization before a collection DMC run.

Finally, (5) note that Ψ̃T (R) and ΨT (R) have different Jas-
trow factors (ΨT (R) is keep fixed during the cost function
optimization steps).

F. Optimization of multi-determinant wave functions

If we restrict the search to pure-state non-interacting v-
representable nodes, the minimum energy EDMC will be
larger than the true ground-state energy E[ρ(r)], because of
the upper bound theorem, unless S(R) is v-representable.

In DMC the v-representability constraint is not required and
can be partially removed by including multi-determinants in
ΦT (R) giving more variational freedom to the nodes.

Note that if we express Ψ̃T (R) as a multi-determinant ex-
pansion of the form

Ψ̃T (R) = eJ(R)
∑

k

αkΦ̃k(R), (29)

and equivalent expression for wave function optimizations can
be found. The sum over occupied (unoccupied) levels in Eq
(22) must be extended to every orbital that is occupied (unoc-
cupied) in at least in one Φ̃k(R). Also, it is easy to prove that
the only change in Eq. (26) required is in the values of the β n

ν

which must be replaced by

βn
ν =

∫
dRW (R)eJ̃(R)

∑
k

αkc
†
ncnΦ̃k(R) , (30)
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where the operators c†n and cn change, when possible, the sin-
gle particle state φν by φn in the Slater determinant Φ̃k(R) ;
and give zero if φν is not included or φn is already occupied.
W (R) is still given by Eq. (24).

The coefficients αk can be optimized using the following
expression.

dKDMC

dαk
=

∫
dRW (R)eJ̃(R)Φ̃k(R). (31)

Note that the multi-determinant expansion obtained in this
subsection different than the one obtained in Section III.
In Section III we found a multi-determinant expression of
ΨFN (R) in a given non-interacting orbital basis set for a
given Jastrow factor. Instead, here, we optimize the Jastrow
factor and the non-interacting basis to match ΨFN (R) within
a prescribed small number of determinants.

V. MODEL SYSTEM TESTS

In this section, to demonstrate the methods described
above, we solve a simple yet non-trivial interacting model as
a function of the interacting potential strength and shape. We
then test a simple version of the algorithm described in Sec-
tion III. Subsequently, we replace the model interaction by a
realistic Coulomb interaction. Finally, in subsection V D we
optimize the wave functions by obtaining the effective nodal
potential, as described in Section IV.

A. A model interacting ground state

For illustrative purposes we choose the same problem
studied in Ref. 17 where we derived the existence of an
effective potential for the wave function nodes. Briefly,
we solve the ground state of two spin-less electrons mov-
ing in a two dimensional square of side length 1 with
a repulsive interaction potential of the form V (r, r ′) =
8π2γ cos [απ(x − x′)] cos [απ(y − y′)].31 In this paper we
show results for α = 1/π and γ = 4. With this choice
of parameters the system is in the highly correlated regime.
In this regime the matrix element of the interaction potential
between the non-interacting ground and first excited states is
larger than the non-interacting energy difference. We expand
the many-body wave function in a full CI expansion of Slater
determinants with the same symmetry as the ground state. The
ground state is degenerate because there are only two elec-
trons. We choose one of the ground-state wave functions ac-
cording to theD2 subgroup of theD4 symmetry of the Hamil-
tonian. For more details see Ref. 17

From the full CI calculation described in V A we ob-
tain a nearly exact expression of the ground state Ψ(R) =∑

n anΦn(R).

FIG. 2: (Color online) Self healed DMC run obtained using the
method described in Section III. Black points denote the average
value of the local energy for each DMC step. Green points mark
the reference energy used for population control. Orange lines mark
the average energy of the trial wave function. The horizontal blue
line marks the energy of the ground state in the full CI calculation.
Vertical lines mark the step when the coefficients of wave function
are updated. Inset: Detail of the DMC run for the first 10000 steps
(Same conventions as in the main figure)

B. Projection of the DMC fixed node wave function on a
multi-determinant expansion

In order to facilitate the comparison with the full CI results,
we sample the mixed-estimator density with the projectors
ξn(R) constructed using the same basis functions of the CI
expansion. For the same reason, we utilized no Jastrow func-
tion (J = 0 in Eq. 8).

Finally, we need to select an initial trial wave function.
While the non-interacting solution has very good nodes 17, we
intentionally chose a bad initial trial wave function in order
to test the strength of the multi-determinant method described
in Section III. The worst case scenario is when the trial wave
function is orthogonal to the exact ground state. If the ex-
act ground state is not included in the trial wave function, a
projector method such as the standard DMC algorithm can-
not yield the exact ground-state energy. Accordingly, to test
the method, we chose for this example λ1 = a3, λ3 = −a1

and λn = 0 for all remaining n.32 Expanding, ΨFN (R) with
these λn and replacing it in Eq. (8) we obtain the projectors
ξn(R). Next we obtained new values λn sampling Eq. (10)
every autocorrelation time. After, a number of configuration
are sampled, we construct a new trial wave function with the
new λn. We only include in the wave functions the coeffi-
cients that satisfied the condition |λ̄n| > 4 <σ̃n>√

Nc−1
, i.e. that

the coefficients are well determined according to some em-
pirical threshold. Note that because the multi-determinants
are solutions of a non-interacting problem, they will tend to
have more nodes as their energy increases. Accordingly, high
energy components of the wave function will have smaller co-
efficients in absolute value as compared with the error. As
a consequence, this acceptance threshold removes the contri-
bution of the high energy components which implies that the
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FIG. 3: (Color online) Values of the coefficients of the multi deter-
minant expansion (small green circles) as compared with the full CI
calculations (large black circles). The error in the DMC average val-
ues of the coefficient is equal to the radius of the green circles. The
inset shows the change of the values as the DMC self healing algo-
rithm progresses. Light gray colors denote older coefficients while
darker ones denote more converged results.

resulting wave function will be smoother than ΨFN (R) with-
out the kinks at the nodes. This process is the core of a more
complex algorithm we propose for larger systems as explained
in Section VI (see steps 3 and 4).

The result of this iterative approach is summarized in Figs.
2, 3, and 4 In Figure 2 we show the average of the local energy
EL and the best estimator for the energy Ebest as a function
of the number of DMC steps. The average energy of the trial
wave function Ē =< ΨT |H |ΨT > / < ΨT |ΨT > is also
given for comparison. The run was carried out for a targeted
population of 200 walkers. The full CI result is given by the
blue line. There is a dramatic decrease of EL, Ebest and Ē
as the trial wave function is updated, and all these values con-
verge to the full CI result. Similar results are obtained with
different starting points and interaction strengths. The only
limiting factor to reaching the exact CI results appears to be
the iteration time. In Figure 3 we show a plot of the values
of the full CI coefficients as a function of the coefficient in-
dex compared with the average values obtained from the opti-
mized trial wave function and a final DMC run using Eq (10).
The coefficients are ordered with increasing non interacting
energy. The error bar of the coefficient is also given. The fig-
ure shows that a wave function expansion with the quality of
CI expansion can be obtained from DMC. Note that (i) knowl-
edge of the ground-state wave function allows the calculations
of any other observable with an error bar determined from the
error bars of the expansion coefficients. (ii) The same wave
function could be expressed with a smaller number of deter-
minants if a Jastrow factor had been used.

The improved quality of the DMC optimized trial wave
function is also evident in figure 4. We plot the logarithm
of the residual projection

RP = log [1− < Ψ|ΨT > /(|Ψ||ΨT |)] (32)

on the “exact” CI ground state as a function of the logarithm
of the total weighted number of configurations along the com-
plete run NwT . Remarkably, the error of the wave function

FIG. 4: Logarithm of the residual projection RP [see Eq. (32)] as
a function of the total weighted number of configurations along the
complete run NwT . The lines are guide to the eye. Inset: projection
of the DMC self healed wave function onto the full CI ground state

projection has decreased to e−8 starting from 1. By noting that
ΨT >= |Ψ > +|δΨ⊥ >), where |δΨ⊥ >) is the difference
between the ground-state |Ψ > and the trial wave function
|ΨT > we get

RP � 2 log[|δΨ⊥|/
√

2]. (33)

We can see that for a significant section of the run |δΨ⊥| ∼
1/NwT . This means that the magnitude of the error in the trial
function decays with a faster exponent than 1/

√
NwT . This is

surprising because if we had provided the exact ground state
as trial wave function, the error after finite sampling would
have scaled as Ψ⊥| ∼ 1/

√
NwT . This faster exponent, in

a section of the plot, is a direct consequence of the fact that
the trial wave function and not only the statistics is improved.
This is another indication that the nodes continue to improve
along the run. For the final part of the graph, however, the
error scales as 1/

√
NwT . This possibly signals that after the

nodal structure is improved to a critical distance from the ex-
act ground state, the statistical error in the determination of
the coefficients and not a small fluctuation in the nodal struc-
ture, is the limiting factor for this algorithm. We believe that
a final 1/

√
NwT scaling of RP signals also that the overall

nodal structure of the solution is correct and only small fluc-
tuation of the coefficients are responsible of small fluctuations
from the exact node.

Remarks: Since the a direct sampling of the fixed node
wave function (Eq. 10) aims to reproduce the fixed node so-
lution, a single DMC run cannot improve the nodes. Only by
iterating with different trial wave-functions can the nodes be
improved. In particular, if an infinite number of configurations
were used, the nodes would not change. In practice however,
we find that for a a finite sample, the error in the wave func-
tion coefficients plays a positive role. Errors act as random
fluctuations in a simulated annealing algorithm. These fluc-
tuations are reinforced or discarded in subsequent iterations.
This allows the nodal error to be systematically reduced to the
point that trial wave functions with 0.9995 projections on the
full CI ground state can be found starting from a trial wave
function initially orthogonal to the ground state. Since bad
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FIG. 5: (Color online) Energy of the DMC run as a function of the
number of DMC steps used to gather statistical data of the wave func-
tion in the previous block. The error bar for the first three points on
the left was not calculated. The statistical error bar of the points of
the right is smaller than the size of the symbol. Blue circles denote
calculations starting from a bad trial wave function (see text). Red
squares mark the results obtained from an initial trial wave function
corresponding to the best blue circle on the right. Green rhombi were
generated starting from the best red square.

nodes are associated with discontinuities in the derivative of
ΨFN (R) at the nodal surface, and consequently an increase in
the kinetic energy, it is also convenient at first to initially limit
the number of configurations sampled (including first the ones
that cost less non-interacting energy).

We recognize that the current work does not address the
suitability and convergence of this method of relying on ran-
dom fluctuations for systems with large numbers of electrons;
this will be the subject of later studies.

C. Coulomb potential results

The use of a simplified electron-electron interaction facili-
tates the CI calculations and the validation of the optimization
method described in Section III. However, it is also important
to test the convergence and stability of the method with a real-
istic Coulomb interaction. Note that in two dimensions (2D)
the correlations are enhanced as compared with three dimen-
sions (3D) while the nodal surface remains non-trivial.

We tested the stability of the algorithm replacing the in-
teraction potential by: V (r, r′) = 20π2/|r − r|31. Since
the length of the square box side is 1, the difference in ki-
netic energy between the non-interacting ground state and the
first-excited state is 3π2. This choice of parameters for the
Coulomb potential places the system in a strongly interacting
regime. To further increase the role of correlations and the
difficulties to overcome by the algorithm we choose J = 0.
We also help the chances of failure by choosing the first ex-
cited state of the non-interacting system as initial trial wave
function.

In figure 5 we show the evolution of the average of the Lo-
cal energy for each DMC optimization block as a function of
the number of DMC steps in each optimization blockNDMC .
Data for Eq. (10) is accumulated every 100 DMC steps. As
in the case of the model Hamiltonian, we increase NDMC

in each optimization as NDMC = 200 × 2nb/2 where nb is
the number of blocks. With this choice we can expect the
error bar in the energy and in the coefficient λn of the multi-
determinant expansion (6) to be reduced a factor 1/2 every
four blocks. Note that during each DMC run not only the local
energy is sampled but also the values of the projectors ξ(R)
used to construct the expansion of the trial wave function of
the next point on the right with Eq. (10).

The blue points in Figure 5 show the progression in average
DMC energy starting from the first excited state. The initial
energy is over 420 compared with the fully converged energy
of 402.718± 0.008. Even starting from such a bad initial trial
wave function, our method is able to improve in the second
block after only accumulating 400 configurations. In con-
trast, the red points in Fig 5 denote the results obtained with
an initial trial wave function constructed with data collected
with the right most blue point, a very good initial trial wave
function.

As the optimization process is repeated, the average DMC
energy fluctuates. Note that since the coefficients carry an
statistical error, the wave function is not the same from one
block to the other and neither is the nodal error. There is a
shift from one iteration to the next which is sometimes larger
than the error bar in the energy. The energy and the variance
can fluctuate and locally increase. However, as the statistics
improve, fluctuations in the coefficients decrease. The sta-
tistical errors play the role of a thermal noise in the coeffi-
cient expansion. Improved statistics correspond to reduced
temperatures in simulated annealing. Note that, initially, the
average DMC energy from the very poor trial wave function
decreases (blue points) as the algorithm progresses, while the
energy of the average DMC energy from the good trial wave-
function (red points) actually increases. This is because when
the statistics are poor the errors in the coefficient expansion
allows improvement of a bad trial wave function but spoil a
good quality one. Figure 5 shows that, as the algorithm pro-
gresses and improved statistics are obtained, the quality of the
solution becomes independent the initial trial wave function.

Note that for intermediate blocks the DMC energy becomes
flat, signaling that the the statistics are not enough to reduce
the nodal error, but are sufficient to stop deterioration of the
wave function.

Finally, repeating the algorithm iteratively leads to an in-
crement in the statistics which results in a clear reduction of
the DMC energy beyond the error bar of the preceding cal-
culations. The DMC energy and the energy variance are re-
duced systematically which is a clear indication of the reduc-
tion of nodal errors and improvement in the overall quality of
the wave function. This reduction in the energy and the en-
ergy variance can be also appreciated directly from the local
energy data, Fig. 2. The ground-state energy obtained after
240000 accumulated DMC iterations is 402.718 ± 0.008.

In figure 6 we show the values of the coefficients of the
multi-determinant expansion as obtained with Eq. (10) cor-
responding to the right-most blue point in Fig. 5. Note that
since no Jastrow factor is used and the interaction potential
includes a singularity at r = r′, the number of coefficients
with significant value is much larger the model interaction de-
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FIG. 6: Values of the coefficients of the multi determinant expan-
sion (small green circles) obtained from the DMC run for two elec-
trons in a square box with a Coulomb interaction in the highly cor-
related limit. The error in the values of the coefficient is equal to
the size of the bar. The inset shows the change of the values of the
multi-determinant expansion coefficients as the DMC self healing
progresses. Light gray colors denote older coefficients while darker
ones denote more converged results.

scribed earlier. The final reduction of nodal errors shown in
the final steps of figure 5 is associated with subtle variations
of the coefficients.

Remarks: i) If the Jastrow factor is set to one, the den-
sity has a simple form which is given in terms of the non-
interacting wave functions φ(r) (see below). ii) Knowledge of
the density allows the calculation of the Khon-Sham potential
as explained in Ref 17 (see below) and suggests, eventually,
the possibility of an alternative route for calculation of forces
instead of the usual statistical sampling33,34.

The DMC density can be obtained in terms of the non in-
teracting orbitals with the following equation35:

ρ(r) =
∑
n,ν

φn(r)φν(r)
∑
k,l

λkλl < Φk|c†ncν |Φl > . (34)

Note in Eq. (34) that all the matrix elements <
Φk|c†ncν |Φl > corresponding to states that differ in more
than one electron hole pair, do not contribute to the ground-
state density.

In figure 7 we show (a) the density corresponding to the
coefficients of Fig. 6 and b) the non-interacting Kohn-Sham
density constructed as explained in Ref. 17.

In figure 8 we show the Kohn-Sham potential obtained as
described in Ref. 17. We minimized the cost function in Eq.
(2) of Ref. 17 using 14 Fourier components in the potential ex-
pansion. We believe that the sampled oscillations in the Kohn-
Sham potential carry some physical meaning. Indeed, those
oscillations are required in order to match the non-interacting
density in Fig. 7 b) to the interacting self-healed DMC density
in Fig 7 a).

However, since the density ρ(r) has an error σρ(r), there is
also an error in the Kohn-Sham potential. In linear response, 17

the error bar in the potential σKS(r (not shown) can be ob-
tained in terms of σρ(r′) and the inverse susceptibility as

σKS(r) =
∫

dr′σρ(r′)
δV (r′)
δρ (r)

. (35)
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FIG. 7: Density of the ground state of two spin-less electrons with
Coulomb interaction in a square box. We choose one of the two de-
generate ground states, reducing the symmetry of the density to D2.
a) Left side of the density of the many-body ground state constructed
with the converge coefficients shown in figure 6. b) Kohn-Sham non
interacting density constructed as explained in Ref.17
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FIG. 8: Kohn-Sham potential for two spin-less electrons in a square
box corresponding to the ground state of figures 6 and 7. The poten-
tial was constructed as explained in Ref. 17

Since, we have removed degeneracies in the ground state by
restricting the symmetry of the wave function, two potentials
that give the same density can only differ in a constant. We
have obtained from DMC not only the approximated DMC en-
ergy but also the derivative of the total energy with respect to
local fluctuations of the density. Figures 7 and 8 show that this
method can provide accurate benchmarks for the validation of
DFT approximations in the highly correlated regime.

D. Model system effective nodal potential and Jastrow factor

To demonstrate that the effective nodal potential and Jas-
trow factor can be obtained through sampling in DMC, in this
section we determine these quantities for a model correspond-
ing to two electrons in a square box with Coulomb interac-



12

FIG. 9: a) Effective nodal potential b) one body Jastrow and c) two
body Jastrow factors obtained by minimizing Eq. (19) to replace
the multi-determinant expansion of Fig. 6 by a single determinant
function.

tions. An additional goal is to show that a complex (multi-
determinant) wave function can potentially be replaced by a
simpler one while retaining the same nodal structure.

The results below correspond to the trial wave function
which is represented by the multi-determinant expansion
shown in Fig. 6. While for larger dimensional systems the in-
tegrals can be performed more efficiently stochastically in this
case the probability densities were binned numerically over a
grid of fifteen bins in all four dimensions. Approximately,
7.2 × 105 weighed configurations were collected.36

The two body Jastrow factor and the local term were sim-
ply written as a Fourier expansion and their coefficients were
minimized with an accelerated steepest decent algorithm us-
ing Eq. (28). The antisymmetric part of the wave function was
given by a single determinant corresponding to the ground
state solution of a non-interacting effective potential. The ef-
fective interactive potential was expressed as a sum of cosine
functions and optimized as explained in Ref. 17. The Jastrow
factors and the potentials can be optimized at the same time.
However, since we wanted the Jastrow factor to carry most of
the load in the optimization of the symmetric corrections to
the probability density, we optimized the potential only every
three Jastrow factor optimization steps.

The resulting potential, and Jastrow factors obtained are
shown in Figure 9. The value of the cost-function was re-
duced an order of magnitude starting from the non-interacting
ground state with zero effective potential. The effective poten-
tial resulting for this minimization procedure is an example of
the nodal potential predicted in Ref.17.

We also performed tests of this optimization algorithm for
the case of the model interaction discussed in Subsection V B
(not shown) that indicate that it also improves the nodal struc-
ture of the wave function (which is signaled by a reduction of
the average DMC energy below the error bar of the preceding
calculation).

VI. AN IMPROVED SELF-HEALING DMC ALGORITHM

It is clear from previous sections that an effective wave
function optimization algorithm could be constructed solely
on the basis of updating iteratively ΨT by the multi-
determinant expansion of ΨFN . An example of this algorithm
applied to a soluble model is presented in Subsection V B.

However, multi-determinant expansions in DMC are compu-
tationally very expensive in large or continuum system, since
the required number of determinants to reach a given accuracy
will in general grow combinatorially. The method developed
in Section IV to optimize a single Slater determinant becomes
very attractive. (Results of the application of this method were
shown in Subsection V D). For large systems, the number of
multi-determinants must be kept to a minimum and the two
methods combined. Experimentation in small systems allows
us to suggest an algorithm that will be efficient in larger sys-
tems:

1. An initial trial single-determinant wave function is gen-
erated using any fast method e.g. an empirical screened
pseudopotential37 or a Thomas-Fermi theory.

2. A Jastrow factor J(R) is optimized in VMC.

3. A DMC run is performed. The number of configura-
tions Nc sampled is increased as this step is repeated.
Statistically uncorrelated values of ξn(R) and ξn(R)2
are accumulated.

4. The multi-determinant expansion of f(R) is con-
structed. Only the terms for that are significantly non-
zero are included in the expansion.

5. A distribution of configurations R j with probability
|W (R)| is generated. The gradients of KDMC with
respect to the effective nodal potential and the gradients
of the Jastrow factor coefficients are evaluated with Eqs.
(26), and (31). (Eventually the multi-determinant ex-
pansion coefficients αk can be included, see Subsection
IV F.)

6. The effective potentials V (r) and J̃(R) are updated
(eventually also the αk). New single particle orbitals
are constructed using Eq. (21). i.e. The single particle
orbitals used to construct the Slater determinants in the
trial wave function are now determined solely within
DMC.

7. A new Ψ̃T (R) is constructed. Steps (5-7) are repeated
until Ψ̃T (R) does not change.

8. To obtain improved scaling in large systems, the non-
interacting orbitals shared by all determinants in the ex-
pansion φn(r) can be transformed to non orthogonal lo-
calized orbitals15,16. ΦT (R) is updated to Φ̃T (R).

9. Steps (2-9) are repeated until Ψ̃T (R) andEDMC do not
change.

Note that (i) The methods in Sections IV and III are comple-
mentary. In Section III, we find a representation of the fixed-
node ground state in a given basis. In Section IV, instead, we
optimize and change the wave functions basis to reproduce the
fixed-node ground-state wave function with a minimum num-
ber of Slater determinants. (ii) Only single configurations are
included in Eq. (26) but multiple configurations are included
in Eq. (6) . (iii) We include a Jastrow function in Eq. (6) to
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minimize the number of Slater determinants required in the
expansion. However, a final run with no Jastrow factor in-
cluded with the configuration interaction expansion might be
useful in order to obtain a pure expression of the ground-state
density in terms of the single particle orbitals. Atomic forces
could be obtained from this density.

VII. SUMMARY

We have presented an algorithm for sampling the fixed-
node many-body wave function in a single or multi-
determinant expansion from a diffusion quantum Monte Carlo
(DMC) calculation within the importance sampling technique.
By combining this algorithm with a previously developed
method for constructing effective potentials targeted at repro-
ducing specific properties of the many-body wave function 17,
we presented an iterative algorithm that improves the nodes
of the trial/fixed-node wave functions used in DMC. Tests on
a simple two electron model system confirm that this method
is able to improve the nodes and that, at least in the case of
the tested system, we find wave functions and energies that
exactly match fully converged configuration interaction cal-
culations.

We have proven that the nodes of the fixed-node wave func-
tion improve as compared with the trial wave function if the
kinks at the nodes are locally smoothed out. The algorithms
presented take advantage of this proof. We have argued that
if the kink at the node increases with the “distance” from the
exact ground state node to the trial wave-function node, the

algorithm would be stable against random statistical fluctua-
tions. Proving this property in general might be difficult and
is beyond the scope of this article. Clearly, in absence of a
proof, experimentation in larger systems is required.

While in the past, methods were used to obtain the fixed
node wavefunction (e.g Ref.23), to our knowledge this is the
first time the fixed node wave function has been obtained
through importance sampling. The availability of the fixed
node wave function provides routes to determine the exact
Kohn-Sham potential, allowing benchmark tests of density
functionals in highly non-trivial and inhomogeneous systems.
It also seems likely that many of the wave function optimiza-
tion approaches (e.g. Refs.6–9) currently applied within varia-
tional Monte Carlo can be recast in the present scheme, mak-
ing direct use of the fixed node wave function, and likely ob-
taining improved results.

In ongoing work, we are continuing to develop these meth-
ods and apply them to larger and more complex electronic
systems.
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